

Ext2fs Undeletion of Directory Structures
mini−HOWTO

Tomas Ericsson

 tomase@matematik.su.se

Revision History

Revision v0.1.1 14 November 2000 Revised by: T.E.

Initial release.

This document is supposed to be as an complementary to the Ext2fs−Undeletion mini−HOWTO written by
Aaron Crane. I really recommend you to carefully study that one before reading this.

Here I will describe a straight forward way of recovering whole directory structures, instead of file by file,
that have been removed by a misplaced rm −rf.

Table of Contents

1. Introduction...1
1.1. Disclaimer...1
1.2. License..1
1.3. Feedback...1
1.4. New versions of this document...1
1.5. Acknowledgements...1
1.6. Background...1

2. Preconditions...3

3. Preparation..4

4. Finding inodes for deleted directories...5

5. Analyse of directory dump...7

6. Locating deleted inodes..9

7. Activating inodes...10

8. Adding directory entries...11

9. Recalculation...12

10. If /lost+found not empty...13

11. Final touch...14

12. References..15

Ext2fs Undeletion of Directory Structures mini−HOWTO

i

1. Introduction

1.1. Disclaimer

The author is not responsible for damages due actions taken based on this document. You will do everything
at your own risk.

1.2. License

This document may be distributed only subject to the terms and conditions set forth in the LDP license
available at http://www.linuxdoc.org/manifesto.html

1.3. Feedback

Any kind of feedback is welcome. Corrections of errors in this text are of great interest. If someone find
things described here useful I really would appreciate to hear that from you.

1.4. New versions of this document

The latest version of this document will be found at http://www.matematik.su.se/~tomase/ext2fs−undeletion/

1.5. Acknowledgements

Thanks to the following persons for correctures etc (in alphabetic order).

• Gabriel Kihlman
• Richard Nyberg
• Mats Oldin
• Tobias Westerblom

1.6. Background

This text has been written while solving my own undeletion problems that I had some time ago. I was about
to move some directories from one disk to another. The problem was that the extra disk went corrupted
directly after the move for some reason.

So I wanted to get the moved directories back from my original disk. There were totally about 40000 files to
recover and I did not feel very much like to search and rename each one of them by hand.

I wanted to get back the whole structure of directories. The same situation would have appeared if I had made
an rm −rf to those directories.

1. Introduction 1

http://www.linuxdoc.org/manifesto.html

http://www.matematik.su.se/~tomase/ext2fs-undeletion/

Ext2fs Undeletion of Directory Structures mini−HOWTO

1. Introduction 2

2. Preconditions
It is really important that you unmount the affected partition immediately before doing anything else with it.
If you have copied around some files in this partition after the accident, then the chance for this method to
work has lowered a lot.

Also you must have a quite new kernel, because the 2.0.x and below zeroes indirect blocks, which will not
make this process to work for files with more than 12 blocks of data.

I will describe one method of recovery and I will not leave out much for error handling. If you suspect that
some step described below went wrong, I do not recommend you to go any further.

2. Preconditions 3

3. Preparation
Unmount the partition where you got your deleted files at. I will denote that partition with /dev/hdx1.

 # umount /dev/hdx1

Check the size in blocks of /dev/hdx1.

 # fdisk −l /dev/hdx

Now you need to have an extra partition of the same size as /dev/hdx1, to be able to act safely. Suppose that
you have an empty harddrive located at /dev/hdy.

 # fdisk /dev/hdy

Create a partition with the same size as /dev/hdx1. Here size is the size in blocks (each block is 1024 kB) of
/dev/hdx1 taken from above.

Note: I am using fdisk version 2.10f and if you have another version the fdisk interaction
below may not be the same.

 fdisk: n <− Add a new partition.
 fdisk: p <− Primary partition.
 fdisk: <− Just press return to chose the default first cylinder.
 fdisk: +sizeK <− Make a partition of the same size as /dev/hdx1.
 fdisk: w <− Write table to disk and exit.

Now copy the content of the original partition to that extra one.

 # dd if=/dev/hdx1 of=/dev/hdy1 bs=1k

This process may take quite a long time dependent of how big the partition is. You can get the job done faster
by increasing the blocksize, bs, but then you need to get the division of the partition by bs to have a
remainder of zero.

From now on we will only work with that copy of the source partition to be able to step back if something
goes wrong.

3. Preparation 4

4. Finding inodes for deleted directories
We will try to find out the inode numbers of the deleted directories.

 # debugfs /dev/hdy1

Walk to that place in the structure where the directories were located before the deletion. You can use ls and
cd inside debugfs.

 debugfs: ls −l

Example of output from the above command.

 179289 20600 0 0 0 17−Feb−100 18:26 file−1
 918209 40700 500 500 4096 16−Jan−100 15:18 file−2
 160321 41777 0 0 4096 3−Jun−100 06:13 file−3
 177275 60660 0 6 0 5−May−98 22:32 file−4
 229380 100600 500 500 89891 19−Dec−99 15:40 file−5
 213379 120777 0 0 17 16−Jan−100 14:24 file−6

Description of the fields.

1. Inode number.
2. First two (or one) numbers represents the kind of inode we got:

2 = Character device

4 = Directory

6 = Block device

10 = Regular file

12 = Symbolic link

Last four numbers are the usual Unix rights.

3. Owner in number representation.
4. Group in number representation.
5. Size in bytes.
6. Date (Here we can see the Y2K bug =)).
7. Time.
8. Filename.

Now dump the mother directory to disk. Here inode is the corresponding inode number (do not forget the '<'
and '>').

 debugfs: dump <inode> debugfs−dump

Get out of debugfs.

4. Finding inodes for deleted directories 5

 debugfs: quit

Ext2fs Undeletion of Directory Structures mini−HOWTO

4. Finding inodes for deleted directories 6

5. Analyse of directory dump
View the dumped inode in a readable format.

 # xxd debugfs−dump | less

Every entry consist of five fields. For the first two fields the bytes representing the field comes in backward
order. That means the first byte is the least significant.

Description of the fields.

1. Four bytes − Inode number.
2. Two bytes − Directory entry length.
3. One byte − Filename length (1−255).
4. One byte − File type (0−7).

0 = Unknown

1 = Regular file

2 = Directory

3 = Character device

4 = Block device

5 = FIFO

6 = SOCK

7 = Symbolic link

5. Filename (1−255 characters).

If an entry in the directory is to be deleted, then the second field at the entry before will be increased by the
value of the deleted entrys second field.

If a filename is renamed to a shorter one, then the third field will be decreased.

The first entry you will see is the directory itself, represented by a dot.

Suppose that we have the following directory entry.

 c1 02 0e 00 40 00 05 01 'u' 't' 'i' 'l' 's'

Then the inode would be e02c1 in hexadecimal representation or 918209 in decimal. The next entry would be
located after 64 bytes (40 in hex). We see that the filename consist of 5 bytes ("utils") and the file type (01) is
a regular file.

Now recalculate the directories inode numbers in decimal representation.

5. Analyse of directory dump 7

If you do not like to calculate this by hand I have made a small program in C that will do this for you. The
program takes as input a directory dump (created by debugfs as described in Section 4). The output (at stdout)
consist of each entrys inode number and filename.

Before you run the program you need to load the dump into a hexeditor and change the directory entry
length field at the entry before the one you want to get back. But it is simple. If we name the field before to
x and the field at the entry you want to get back to y. Then change x to x − y.

The program called e2dirana (ext2fs directory analyse) can be found at
http://www.matematik.su.se/~tomase/ext2fs−undeletion/

Ext2fs Undeletion of Directory Structures mini−HOWTO

5. Analyse of directory dump 8

http://www.matematik.su.se/~tomase/ext2fs-undeletion/

6. Locating deleted inodes
Get a list of all deleted inodes.

 # echo lsdel | debugfs /dev/hdy1 > lsdel.out

One problem here is that debugfs will not give the inode numbers to files that are zero in size (you probably
have some in your /etc directory for instance). I will tell how to solve this problem in Section 9 and Section
11.

Load "lsdel.out" into a texteditor. The list of inodes should be sorted in time. Try to remember exactly what
time you did that rm −rf. Probably it was the the last items you deleted and then they will be located at the
bottom of the list, because it is sorted in time. Delete all lines that has nothing of interest. Save as
"lsdel.out−selected".

Now we will cut away everything except the inodes.

 # cut −b 1−8 lsdel.out−selected | tr −d " " > inodes

To be sure, check that the deleted directories found above have their inodes in the list.

 # grep ^inode$ inodes

Where inode is the corresponding inode number.

6. Locating deleted inodes 9

7. Activating inodes
Now it is time for changing some flags of the deleted inodes.

Copy the following 6 lines into a file named "make−debugfs−input".

 #!/bin/sh
 awk '{ print "mi <" $1 ">\n"\
 "\n\n\n\n\n\n\n"\
 "0\n"\
 "1\n"\
 "\n" }'

This will simulate the user input when editing the inodes manually. We will set deletion time to 0 and link
count to 1.

Note: I am using debugfs version 1.18 and if you have another version you should check if
you need to adjust the number of returns above.

Now change the inodes.

 # ./make−debugfs−input < inodes | debugfs −w /dev/hdy1 | tail −c 40

If all went well it should end with "Triple Indirect Block [0] debugfs:".

7. Activating inodes 10

8. Adding directory entries
Start up debugfs in read−write mode.

 # debugfs −w /dev/hdy1

Now you should add the deleted directories to the directory were they were located before deletion.

 debugfs: link <inode> directoryname

Where inode is the inode number and directoryname is the directoryname.

After you have added the links you will notice that the directories have popped up in the current directory.
You can now list their contents (from debugfs).

But the size shown for each directory is zero and that need to be fixed, otherwise they will look empty with
ls from the shell.

Get out of debugfs.

 debugfs: quit

8. Adding directory entries 11

9. Recalculation
Now it is time to call e2fsck to recalculate the sizes and checksums.

Note: I am using e2fsck version 1.18 and if you have another version you should check if
some parameters or interaction have changed.

If you know that you do not have any files with the size of zero that you want to recover you can do the
following and skip the rest of this section (Of course you can leave out the y parameter, but then you need to
answer all questions by hand and it may take a lot of time.).

 # e2fsck −f −y /dev/hdy1 > e2fsck.out 2>38;1

If you instead want the zero files back you have to answer no to all questions about clearing entries and yes to
the other ones.

Copy the following 7 lines into a file named "e2fsck−wrapper".

 #!/usr/bin/expect −f
 set timeout −1
 spawn /sbin/e2fsck −f $argv
 expect {
 "Clear<y>? " { send "n" ; exp_continue }
 "<y>? " { send "y" ; exp_continue }
 }

Run the script.

 # ./e2fsck−wrapper /dev/hdy1 > e2fsck.out 2>38;1

Examine "e2fsck.out" to see what e2fsck thought about your partition.

9. Recalculation 12

10. If /lost+found not empty
Some of the directory and files may not pop−up at their right places. Instead they will be located in
/lost+found with names after their inode numbers.

In this case the pointer at the ".." directory entry probably have been increased and will point to one of the
later entrys in the directory (of some reason I do not know, maybe it is a fs bug).

Examine pass 3 (where directory connectivity is checked) of "e2fsck.out". There you will find which
directories that are affected. Dump those to disk (as described in Section 4).

Run e2dirana both with and without the p parameter (it changes the pointer at the ".." directory entry). Here
dump is the dumped directory.

 # e2dirana dump > dump1
 # e2dirana −p dump > dump2

Compare the outputs.

 # diff dump1 dump2

If they are not the same there are missing files in that directory. Then move those files from /lost+found to
their right place. Here dest is a symbolic link to the destination directory. Put the output in a script and run it
if you agree.

 # diff dump1 dump2 |\
 tail −n $[`diff dump1 dump2 | wc −l`−1] | cut −b 3− |\
 sed −e 's/^\([^]*\) \(.*\)$/mv lost+found\/#\1 dest\/"\2"/' |\
 sed −e 's/!/"\\\!"/g'

Repeat all this until /lost+found is empty.

10. If /lost+found not empty 13

http://www.matematik.su.se/~tomase/ext2fs-undeletion/

11. Final touch
If in Section 9 you choosed to get files with the size of zero back you now have a problem, because those
files has a non−zero deletion time and their link count is zero. That means that every time e2fsck is running it
will prompt to remove (clear) those files.

The easy way to solve this is to copy the whole directory structure to another place (it can be the same
partition) and then delete the old directory structure. Otherwise you will have to locate those inodes and
change them with debugfs.

Now if everything have went well, things should have been restored to its original state before deletion. At
least it did for me and in those tests I have made while writing this. Be sure that you have brought up to the
preconditions described in Section 2.

11. Final touch 14

12. References
Linux Ext2fs Undeletion mini−HOWTO, v1.3

• Aaron Crane

Design and Implementation of the Second Extended Filesystem,
http://e2fsprogs.sourceforge.net/ext2intro.html

• Rémy Card, Laboratoire MASI−−Institut Blaise Pascal
• Theodore Ts'o, Massachussets Institute of Technology
• Stephen Tweedie, University of Edinburgh

Kernel Source for Linux 2.2.16

• linux/include/linux/ext2_fs.h
• linux/fs/ext2/namei.c

12. References 15

http://e2fsprogs.sourceforge.net/ext2intro.html

		Table of Contents

		1. Introduction

		1.1. Disclaimer

		1.2. License

		1.3. Feedback

		1.4. New versions of this document

		1.5. Acknowledgements

		1.6. Background

		2. Preconditions

		3. Preparation

		4. Finding inodes for deleted directories

		5. Analyse of directory dump

		6. Locating deleted inodes

		7. Activating inodes

		8. Adding directory entries

		9. Recalculation

		10. If /lost+found not empty

		11. Final touch

		12. References

